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Proposition 0.1 (Exercise ba). Let F' be a closed subset of R such that m(R\ F) is finite.
Define

d(z) =d(xz,F) =inf{|z —a| : a € F}
Then 6 : R — R s continuous.
I'm not sure how to prove the above statement at the moment.
Proposition 0.2 (Exercise 5b). Let F' be a closed subset of R with m(R \ F') < co. Define
d(z) =d(x,F) =inf{|r —a| : a € F}

&w

o
Then I(x) = oo for x & F.

Proof. Forn € Nand z € R\ F, set ¢%(y) = min(f,(y),n) and let EX = {y € R\ F': f.(y) >
n}. We have g* 7 f., so by the Monotone Convergence Theorem,

@Z/ﬁ@@Zﬁm/%:ﬁm</ %+/g@=hm</ h+/n)

Since F' is closed, R \ F' is open, so there is an open ball B(z,r) contained in R\ F.
Since § is continuous, f, is continuous on B(z,7) \ {z}. We know that as y approaches z,
fu(y) — o0, so there exists M € R such that f,.(B(z,7)) = (M,0c0). Then for n € N, we
can choose ap,b, € B(z,r) \ {z} with a, < z < b, and f,(a,), fz(b,) > n. We then have
m(E®) > m(ay,,b,) = b, — a, so

/L n=nm(E,) > n(b, — a,) = f(an)(a, — by)

> fan)(x — ) = (ﬂ%))(f —o) =




As n — o0, a, — T, SO

lim n =00

Thus

I(x) > lim n = oo

so I(x) = oo. O

Proposition 0.3 (Exercise 5¢). Let F' be a closed subset of R such that m(R\ F) is finite.
Define

5()—dxF 1nf{|x—a| a€F}

/ Iﬂﬁ—yl2

Then I(x) < oo for almost all © € F.

Proof. We will show that

/F](x)dx < 0

From this it will follow that I(z) < oo for almost all z € F. First, note that d(y) = 0 for

y € F, so
oy
O
R\F |z -y
Then we can compute

d(y) d(y)
I:cd:c:// dyd:c://—xX dy dx
/F (@) F JR\F [z —yl? rJr [T —y[? FXED

Note that %XFMR\F) is measurable since ¢ is continuous (and hence measurable) and

ﬁ is continuous almost everywhere, so this is a product of measurable functions. They
by Fubini’s Theorem, we can interchange the order of integration to get

0
/](m)dm = // ) SX®\F)xF dT dy
F rJR [T — Yl
:/ / d0) 5 dr dy
R\F [z =y
/ / dx dy
R\F |z —




Now, becase F' C {(z y) |z —y| > 0(y)}, we have

5w) 1 < 1 > 1
de < —de + —2d3: =2 —2d$
!x—y! 5(y) T sy ©

This is a Riemann-integrable functlon, so we can compute the integral using standard tech-
niques to get

Putting this together, we have

/F I(z)dz < /R ’ 5(@%” dy = 2m(R\ F)

As m(R\ F') < oo by hypothesis, we have what we set out to prove:

/ I(z)dx < o0
F
Thus I(z) < oo for almost all z € F. O

Proposition 0.4 (Exercise 6a). There exists a positive continuous function f on R so that
[ is integrable on R but limsup,_, . f(z) = oo.

Proof. First, let g : R — [0, 00) be
kE xe /{:,/{;—1—1/{:3 for ke N
g(x) = { | /F)

0 else

We can approximate g by the sequence of simple functions

@ {k z €[k k+1/k% forkeNk<n
gn =

0 else

These clearly converge to g everywhere. The integral of g, is
k1
Jow=35=>0p
k=1 k=1
And since g, are increasing to g, the integral of ¢ is
S = —
pet k 6

which is notably finite. We will make some modifications to find a continuous function
analogous to g. Define f: R — [0, 00) by

2n'y — 2n° x € [n,n+1/(2n%))
fl@) =< =2n'z+2n°+2n z € [n+1/(2n%),n+1/n?)
0 else

Here is a plot of the graphs of f and g on the interval [0,3.5]. Orange is f, blue is g. In
places where you don’t see blue, g is zero (the plot of f is on layered on top of the plot of g).
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Graph of g(x) and f(x)
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As defined, f is piecewise linear and the pieces meet at the breaks, so f is continuous. By

monotonicity,
[ @< [ o

so f is integrable. However, we note that clearly

limsup f(z) = lim sup{f(z) : 2 >y} = o0
T—00 y—oo

Thus f is a non-negative function which is integrable on R but has limsup,_, . f(z) = co. If

we really want a function that is positive everywhere and still enjoys this property, we can

use

1
h(z) = —
(@) =f@)+ 103
as 1/(1 + %) is continuous and gives a finite integral over R. O

Lemma 0.5 (for Exercise 6b). If f : R — R is uniformly continuous, and we set

[T =max(f,0)
f_ = maX(_fv O)

then f* and f~ are uniformly continuous.



Proof. Let € > 0. By uniform continuity of f, there exists 6 > 0 such that
-yl <6 = |f(z) - fly)l <e
We claim that
(@) = [Tl < |f(@) = fw)l

Without loss of generality, assume f(y) < f(x). If both f(z), f(y) are positive, then we
have equality, so we have the desired inequality. If both are less than or equal to zero, then
ft(z) = f*(y) = 0 so we have the inequality trivially. Finally, if f(y) < 0 and f(x) > 0,
then f*(z) = f(x) and fT(y) =0 > f(y), so the inequality holds. Thus

[z —yl<d = [f7(2) = fT(y)l <e
so fT is uniformly continuous. An analogous argument holds for f~. O]

Proposition 0.6 (Exercise 6b). Let f : R — R be uniformly continuous and integrable.
Then

lim f(z)=0

|z| =00

Proof. First we consider the case where f is non-negative. Let f be uniformly continuous
and integrable, and suppose that lim| f(x) # 0. Then there exists ¢ > 0 such that for
every n € N there exists a,, such that a,, > n and f(a,) > 2¢. By skipping terms if necessary,
we can choose a,, so that a, + 1 < a,; (since lima,, = c0).

Since f is uniformly continuous and € > 0, there exists § > 0 such that for z,y € R,

[z —yl <6 = [f(z) = fly)| <e

We can assume 6 < 1/2 (if not, we simply set 6 = 1/2). Consider the union
A= B(ay,d)
n=1

Note that this union is disjoint, as d(a,,ax) > 1 for all n # k and § < 1/2. Set g = exa4. We
claim that ¢ < f. On R\ A this is obvious as f is nonnegative and g = 0. On A, we have
g(x) =e€. For z € A, we have

[z —an| <6 = [f(z) = flan)| <€ = [flz) > €

since f(a,) > 2¢. Thus we have established that ¢ < f. Now consider the integral of g.

/g(m)d:c = /EXAdZE = em(A) = EZm(B(an, 5)) = EZ 2§

Since €, > 0, this sum is infinite. By monotonicity,

[r=[o-



This contradicts the hypothesis that f is integrable, so we reject our assumption that
lim;| 00 f(2) # 0 and conclude that the limit is zero.

Now we return to the general case, where f is any integrable and uniformly continuous
function, that may not be non-negative. Then we can write f as f = f* — f~ where f*, f~
are integrable, and by the above lemma, they are also uniformly continuous. Since both are
non-negative, the result just shown applies, so each has the desired limit. Then by limit laws

lim f= lim ff— lim fF=0-0=0

Proposition 0.7 (Exercise 8). Let f be integrable on R and define F : R — R by

F(z) = /_ T

Then F' is uniformly continuous.

Proof. We need to show that for € > 0, there exists o > 0 such that
[T -yl <0 = [F(x) = Fy)| <e
Let € > 0. Without loss of generality, assume that x < y. Note that

/l f(t)dt = /Oo f(t)dt + /xy F(t)dt

|F@»—f%w|=‘/xﬂwﬁ—1[:faw4

e}

_ /_;f(t)dt—/_;f(t)dt—/:f(t)dt‘
_ /: f(t)dt‘

gﬁvww

By Proposition 1.12(ii), there exists ¢ > 0 such that

JALRE

whenever m(E) < 0. Then if |z — y| < §, m((z,y)) < d so

!fuwW<e

so combining our inequalities, we reach the desired inequality.

rm@—MWS/ﬂmwnx

whenever |z — y| < d. Thus F' is uniformly continuous. O

So then
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Proposition 0.8 (Exercise 9). Let f : R — R be integrable and non-negative. For a > 0,
define

E,={z: f(x) > a}

sé/f

Proof. Define g, : R — R by g, = axg,. Then 0 < g, < f, and [ go = am(E,), so by

monotonicity,
Jous [t = amE)< [1 = mE)< [1

Lemma 0.9 (for Exercise 10). Let a,, € R? be a sequence over a countable indexing set
{(n,k) € N x K}, such that a,, >0 for all n,k. Then

D) ITED S il

neN ke K keK neN

Then

]

Proof. Without loss of generality, suppose N = K = N. Define f(x,y): R* = R by

e N<rx<n+landk<y<k+1
flx,y) = .
0 otherwise

Then we have

/ka d:c—Zank

neN
/ F,y) dy ="
keK
So
% = [ rtew dedy
keK neN
S - [ren
neN keK
By Fubini’s Theorem, these two integrals are equal. O]

Lemma 0.10 (for Exercise 10). Let f : R? — R be measurable and {Ey}32, be a disjoint
sequence of sets. Let E = |J;—, Ey. Then

/Ef:g E /



Proof. Let g = xgf and F,, = J;_, Ex and ¢, = xr,f. Then g, / g so by the Monotone
Convergence Theorem we get

lim f—hm/fo—hm/gn /g—/f

n

F=> 1 f

Fn 1 By

fr=tmdf 1=

Proposition 0.11 (Exercise 10). Let f : R? — R be non-negative and measurable, and
finite almost everywhere. Let Ey. = {z : f(x) > 2%} and Fy, = {z : 2% < f(x) < 281}, The
following are equivalent:

By additivity,
Thus

]

1. f is integrable
2. Y her 28m(Fy) < oo
8. Y ez 2Fm(Eg) < 00

Proof. First we show (1) = (2). Let f be integrable, that is, suppose | f < oo. We know
that

QkafQJ S f
F,

since f(z) > 2% on Fj. Since the collection {F},} is pairwise disjoint, we can use our lemma
to get

S 2km(R) < Z/F — [ <o

keZ keZ

Thus (2) holds. Now we show that (2) = (1). By our lemma,

2)
Ji-%],

keZ

We know that f(z) < 28! for z € F}, ,s0

/ f < 2Mhm(E)
Fy,



thus
[ =2 mn) =2y 2m(R) < o0
kez keZ

thus f is integrable, so (1) holds. Now we show that (3) == (2). Suppose that (3) holds.
Note that Fj, C Eg so m(Fg) < m(FEqx), thus

m(Fy) < 2"m(Ep) = ) 2"m(Fy) <) 2%m(Ea) < o0
keZ keZ

thus (2) holds. Finally, we show that (2) = (3). Suppose that (2) holds. Note that
Egr = J,;>1, Fn (this union is disjoint). Then

> 2km(Ey) =) 2 (Z m(Fn)) =3 2"m(F,)

k€EZ kEZ n>k kEZ n>k

We can interchange these limits by our lemma, so

> m(Ep) =) 2Pm(F) =) m(F,)) 2¢ =) m(F,) Zzn—j

kEZ n€eZ k<n nez k<n nez
=> " m(F)2" Y 27 = 2" im(F,) =2 2"m(F,) < o
nez 7=0 nez nez
Thus (3) holds. We showed (1) <= (2) and (2) <= (3), so they are all equivalent. O

Proposition 0.12 (Exercise 10). Define

fla) = {(|)x| if 2] <1 o(@) = {|Ox|b if 2] > 1

otherwise otherwise

Then f is integrable on R? if and only if a < d; also g is integrable on R? if and only if
b>d.

Proof. First consider f. Then
Fo={z:2" < f(x) <28 = {2 € B(0,1) : 2F < |z|7* < 2!}

For k < 0, F, = 0. For k > 0, F}, is a spherical annulus between balls of radius 27%/¢ and
2-(k+D/a So we can compute m(Fy) as

m(Fy) = m(B(0,27%)) — m(B(0,2-"/))
::Ud(Q—k/a)d___vd(2—(h+n/a)d
— ’UdQ_kd/a(l _ 2—d/a)



where v, is the constant we found in Exercise 6 of Chapter 1. So then

o
Z 2k Fk — Zkad27kd/a<1 o 27d/a> = vy 2d/a Z 2k (1—d/a)
keZ k=0 k=0

If a < d, then 1 — d/a < 0 so the sum converges. Conversely, if the sum converges, we must
have 1 —d/a < 0, so a < d. Hence f is integrable if and only if a < d.
Now we consider g. For g,

By = {z: g(x) > 2} = {2 ¢ R\ B(0,1) : |z|™* > 2¥}
For k > 0, Eox = (). For k < 0, Ey is again a difference of balls centered at the origin, so

m(Eq) = m(B(0,27%%) — m(B(0,1))
= Ud27kd/b — VU4

— ,Ud(27kd/b . 1)

So we compute

D 2m(Ey) =) 2Fug(27M0 — 1)

keZ k<0
=y Z Qk‘(l—d/b) _ 2k‘
k<0
_,UdZZktl d/b) sz
k<0 k<0

The right sum converges to 1, and the left sum converges if and only if d < b. Thus g is
integrable if and only if b > d. m

Proposition 0.13 (Exercise 11). Suppose that f is integrable on R?, real-valued, and fE x)dx >
0 for every measurable E C R%. Then f(x) > 0 almost everywhere.

Proof. For E C R? and € > 0, define
E.={r€eFE: f(x)<—e<0}

Note that since f is measurable, E. is measurable. Observe that

U Bujn = {a: f() < 0}

By hypothesis, for every n we have

m(El/n)
n

0< f(r)dr < —

El/n
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Suppose the proposition is false. Then there exists a measurable £ C R? with m(E) > 0
and f(z) <0 on E. Then

UEym=E = > m(Ey,) =m(E)
n=1 n=1

but the infinite sum has all terms zero, so m(E) = 0, which is a contradiction. ]

Proposition 0.14 (Exercise 11). Let f be integrable on R%, real-valued, and fEf =0 for
every measurable set E C RY. Then f(x) = 0 almost everywhere.

Proof. As shown above, f(z) > 0 almost everywhere. Additionally, [, —f = 0 for every
measurable E, so by the previous result —f(z) >0 = f(z) < 0 almost everywhere. Thus

flz) <0< f(a)

almost everywhere, so f(x) = 0 almost everywhere. O
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