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Proposition 0.1 (Exercise 5a). Let F be a closed subset of R such that m(R \ F ) is finite.
Define

δ(x) = d(x, F ) = inf{|x− a| : a ∈ F}

Then δ : R→ R is continuous.

I’m not sure how to prove the above statement at the moment.

Proposition 0.2 (Exercise 5b). Let F be a closed subset of R with m(R \ F ) <∞. Define

δ(x) = d(x, F ) = inf{|x− a| : a ∈ F}

fx(y) =
δ(y)

|x− y|2

I(x) =

∫
R
fx(y)dy

Then I(x) =∞ for x 6∈ F .

Proof. For n ∈ N and x ∈ R\F , set gxn(y) = min(fx(y), n) and let Ex
n = {y ∈ R\F : fx(y) >

n}. We have gxn ↗ fx, so by the Monotone Convergence Theorem,

I(x) =

∫
fx(y)dy = lim

n→∞

∫
gxn = lim

n→∞

(∫
R\Exn

gxn +

∫
Exn

gxn

)
= lim

n→∞

(∫
R\Exn

fx +

∫
Exn

n

)
Since F is closed, R \ F is open, so there is an open ball B(x, r) contained in R \ F .
Since δ is continuous, fx is continuous on B(x, r) \ {x}. We know that as y approaches x,
fx(y) → ∞, so there exists M ∈ R such that fx(B(x, r)) = (M,∞). Then for n ∈ N, we
can choose an, bn ∈ B(x, r) \ {x} with an < x < bn and fx(an), fx(bn) > n. We then have
m(Ex

n) ≥ m(an, bn) = bn − an so∫
Exn

n = nm(En) ≥ n(bn − an) = f(an)(an − bn)

≥ f(an)(x− an) =
δ(an)

(x− an)2
(x− an) =

δ(an)

x− an

1



As n→∞, an → x, so

lim
n→∞

∫
Exn

n =∞

Thus

I(x) ≥ lim
n→∞

∫
Exn

n =∞

so I(x) =∞.

Proposition 0.3 (Exercise 5c). Let F be a closed subset of R such that m(R \ F ) is finite.
Define

δ(x) = d(x, F ) = inf{|x− a| : a ∈ F}

I(x) =

∫
R

δ(y)

|x− y|2
dy

Then I(x) <∞ for almost all x ∈ F .

Proof. We will show that ∫
F

I(x)dx <∞

From this it will follow that I(x) < ∞ for almost all x ∈ F . First, note that δ(y) = 0 for
y ∈ F , so

I(x) =

∫
R\F

δ(y)

|x− y|2
dy

Then we can compute∫
F

I(x)dx =

∫
F

∫
R\F

δ(y)

|x− y|2
dy dx =

∫
R

∫
R

δ(y)

|x− y|2
χF×(R\F ) dy dx

Note that δ(y)
|x−y|2χF×(R\F ) is measurable since δ is continuous (and hence measurable) and

1
|x−y|2 is continuous almost everywhere, so this is a product of measurable functions. They
by Fubini’s Theorem, we can interchange the order of integration to get∫

F

I(x)dx =

∫
R

∫
R

δ(y)

|x− y|2
χ(R\F )×F dx dy

=

∫
R\F

∫
F

δ(y)

|x− y|2
dx dy

=

∫
R\F

δ(y)

∫
F

1

|x− y|2
dx dy
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Now, becase F ⊂ {(x, y) : |x− y| ≥ δ(y)}, we have∫
F

1

|x− y|2
dx ≤

∫ δ(y)

−∞

1

x2
dx+

∫ ∞
δ(y)

1

x2
dx = 2

∫ ∞
δ(y)

1

x2
dx

This is a Riemann-integrable function, so we can compute the integral using standard tech-
niques to get ∫ ∞

δ(y)

1

x2
dx =

1

δ(y)

Putting this together, we have∫
F

I(x)dx ≤
∫
R\F

δ(y)
2

δ(y)
dy = 2m(R \ F )

As m(R \ F ) <∞ by hypothesis, we have what we set out to prove:∫
F

I(x)dx <∞

Thus I(x) <∞ for almost all x ∈ F .

Proposition 0.4 (Exercise 6a). There exists a positive continuous function f on R so that
f is integrable on R but lim supx→∞ f(x) =∞.

Proof. First, let g : R→ [0,∞) be

g(x) =

{
k x ∈ [k, k + 1/k3) for k ∈ N
0 else

We can approximate g by the sequence of simple functions

gn(x) =

{
k x ∈ [k, k + 1/k3) for k ∈ N, k ≤ n

0 else

These clearly converge to g everywhere. The integral of gn is∫
gn(x) =

n∑
k=1

k

k3
=

n∑
k=1

1

k2

And since gn are increasing to g, the integral of g is
∞∑
k=1

1

k2
=
π2

6

which is notably finite. We will make some modifications to find a continuous function
analogous to g. Define f : R→ [0,∞) by

f(x) =


2n4x− 2n5 x ∈ [n, n+ 1/(2n3))

−2n4x+ 2n5 + 2n x ∈ [n+ 1/(2n3), n+ 1/n3)

0 else

Here is a plot of the graphs of f and g on the interval [0, 3.5]. Orange is f , blue is g. In
places where you don’t see blue, g is zero (the plot of f is on layered on top of the plot of g).
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Graph of g(x) and f(x)

As defined, f is piecewise linear and the pieces meet at the breaks, so f is continuous. By
monotonicity, ∫

f(x) ≤
∫
g(x)

so f is integrable. However, we note that clearly

lim sup
x→∞

f(x) = lim
y→∞

sup{f(x) : x ≥ y} =∞

Thus f is a non-negative function which is integrable on R but has lim supx→∞ f(x) =∞. If
we really want a function that is positive everywhere and still enjoys this property, we can
use

h(x) = f(x) +
1

1 + x2

as 1/(1 + x2) is continuous and gives a finite integral over R.

Lemma 0.5 (for Exercise 6b). If f : R→ R is uniformly continuous, and we set

f+ = max(f, 0)

f− = max(−f, 0)

then f+ and f− are uniformly continuous.
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Proof. Let ε > 0. By uniform continuity of f , there exists δ > 0 such that

|x− y| < δ =⇒ |f(x)− f(y)| < ε

We claim that

|f+(x)− f+(y)| ≤ |f(x)− f(y)|

Without loss of generality, assume f(y) ≤ f(x). If both f(x), f(y) are positive, then we
have equality, so we have the desired inequality. If both are less than or equal to zero, then
f+(x) = f+(y) = 0 so we have the inequality trivially. Finally, if f(y) ≤ 0 and f(x) > 0,
then f+(x) = f(x) and f+(y) = 0 ≥ f(y), so the inequality holds. Thus

|x− y| < δ =⇒ |f+(x)− f+(y)| < ε

so f+ is uniformly continuous. An analogous argument holds for f−.

Proposition 0.6 (Exercise 6b). Let f : R → R be uniformly continuous and integrable.
Then

lim
|x|→∞

f(x) = 0

Proof. First we consider the case where f is non-negative. Let f be uniformly continuous
and integrable, and suppose that lim|x|→∞ f(x) 6= 0. Then there exists ε > 0 such that for
every n ∈ N there exists an such that an > n and f(an) > 2ε. By skipping terms if necessary,
we can choose an so that an + 1 < an+1 (since lim an =∞).

Since f is uniformly continuous and ε > 0, there exists δ > 0 such that for x, y ∈ R,

|x− y| < δ =⇒ |f(x)− f(y)| < ε

We can assume δ ≤ 1/2 (if not, we simply set δ = 1/2). Consider the union

A =
∞⋃
n=1

B(an, δ)

Note that this union is disjoint, as d(an, ak) ≥ 1 for all n 6= k and δ ≤ 1/2. Set g = εχA. We
claim that g ≤ f . On R \ A this is obvious as f is nonnegative and g = 0. On A, we have
g(x) = ε. For x ∈ A, we have

|x− an| < δ =⇒ |f(x)− f(an)| < ε =⇒ f(x) > ε

since f(an) > 2ε. Thus we have established that g ≤ f . Now consider the integral of g.∫
g(x)dx =

∫
εχAdx = εm(A) = ε

∞∑
n=1

m(B(an, δ)) = ε
∞∑
n=1

2δ

Since ε, δ > 0, this sum is infinite. By monotonicity,∫
f ≥

∫
g =∞
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This contradicts the hypothesis that f is integrable, so we reject our assumption that
lim|x|→∞ f(x) 6= 0 and conclude that the limit is zero.

Now we return to the general case, where f is any integrable and uniformly continuous
function, that may not be non-negative. Then we can write f as f = f+− f− where f+, f−

are integrable, and by the above lemma, they are also uniformly continuous. Since both are
non-negative, the result just shown applies, so each has the desired limit. Then by limit laws

lim
|x|→∞

f = lim
|x|→∞

f+ − lim
|x|→∞

f− = 0− 0 = 0

Proposition 0.7 (Exercise 8). Let f be integrable on R and define F : R→ R by

F (x) =

∫ ∞
−∞

f(t)dt

Then F is uniformly continuous.

Proof. We need to show that for ε > 0, there exists δ > 0 such that

|x− y| < δ =⇒ |F (x)− F (y)| < ε

Let ε > 0. Without loss of generality, assume that x < y. Note that∫ y

−∞
f(t)dt =

∫ x

−∞
f(t)dt+

∫ y

x

f(t)dt

So then

|F (x)− F (y)| =
∣∣∣∣∫ x

∞
f(t)dt−

∫ y

−∞
f(t)dt

∣∣∣∣
=

∣∣∣∣∫ x

−∞
f(t)dt−

∫ x

−∞
f(t)dt−

∫ y

x

f(t)dt

∣∣∣∣
=

∣∣∣∣∫ y

x

f(t)dt

∣∣∣∣
≤
∫ y

x

|f(t)|dt

By Proposition 1.12(ii), there exists δ > 0 such that∫
E

|f | < ε

whenever m(E) < δ. Then if |x− y| < δ, m((x, y)) < δ so∫ y

x

|f(t)|dt < ε

so combining our inequalities, we reach the desired inequality.

|F (x)− F (y)| ≤
∫ y

x

|f(t)|dt < ε

whenever |x− y| < δ. Thus F is uniformly continuous.
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Proposition 0.8 (Exercise 9). Let f : R → R be integrable and non-negative. For α > 0,
define

Eα = {x : f(x) > α}

Then

m(Eα) ≤ 1

α

∫
f

Proof. Define gα : R → R by gα = αχEα . Then 0 ≤ gα ≤ f , and
∫
gα = αm(Eα), so by

monotonicity, ∫
gα ≤

∫
f =⇒ αm(Eα) ≤

∫
f =⇒ m(Eα) ≤ 1

α

∫
f

Lemma 0.9 (for Exercise 10). Let ank ∈ Rd be a sequence over a countable indexing set
{(n, k) ∈ N ×K}, such that ank ≥ 0 for all n, k. Then∑

n∈N

∑
k∈K

ank =
∑
k∈K

∑
n∈N

ank

Proof. Without loss of generality, suppose N = K = N. Define f(x, y) : R2 → R by

f(x, y) =

{
ank n ≤ x < n+ 1 and k ≤ y < k + 1

0 otherwise

Then we have ∫
R
f(x, k) dx =

∑
n∈N

ank∫
R
f(n, y) dy =

∑
k∈K

ank

So ∑
k∈K

∑
n∈N

=

∫
f(x, y) dx dy

∑
n∈N

∑
k∈K

=

∫
f(x, y) dy dx

By Fubini’s Theorem, these two integrals are equal.

Lemma 0.10 (for Exercise 10). Let f : Rd → R be measurable and {Ek}∞k=1 be a disjoint
sequence of sets. Let E =

⋃∞
k=1Ek. Then∫

E

f =
∞∑
k=1

∫
Ek

f
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Proof. Let g = χEf and Fn =
⋃n
k=1Ek and gn = χFnf . Then gn ↗ g so by the Monotone

Convergence Theorem we get

lim
n→∞

∫
Fn

f = lim
n→∞

∫
χFnf = lim

n→∞

∫
gn =

∫
g =

∫
E

f

By additivity, ∫
Fn

f =
n∑
k=1

∫
Ek

f

Thus ∫
E

f = lim
n→∞

n∑
k=1

∫
Ek

f =
∞∑
k=1

∫
Ek

f

Proposition 0.11 (Exercise 10). Let f : Rd → R be non-negative and measurable, and
finite almost everywhere. Let E2k = {x : f(x) > 2k} and Fk = {x : 2k < f(x) ≤ 2k+1}. The
following are equivalent:

1. f is integrable

2.
∑

k∈Z 2km(Fk) <∞

3.
∑

k∈Z 2km(E2k) <∞

Proof. First we show (1) =⇒ (2). Let f be integrable, that is, suppose
∫
f <∞. We know

that

2km(Fk) ≤
∫
Fk

f

since f(x) ≥ 2k on Fk. Since the collection {Fk} is pairwise disjoint, we can use our lemma
to get ∑

k∈Z

2km(Fk) ≤
∑
k∈Z

∫
Fk

f =

∫
f <∞

Thus (2) holds. Now we show that (2) =⇒ (1). By our lemma,∫
f =

∑
k∈Z

∫
Fk

f

We know that f(x) ≤ 2k+1 for x ∈ Fk ,so∫
Fk

f ≤ 2k+1m(Fk)
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thus ∫
f ≤

∑
k∈Z

2k+1m(Fk) = 2
∑
k∈Z

2km(Fk) <∞

thus f is integrable, so (1) holds. Now we show that (3) =⇒ (2). Suppose that (3) holds.
Note that Fk ⊂ E2k so m(Fk) ≤ m(E2k), thus

2km(Fk) ≤ 2km(E2k) =⇒
∑
k∈Z

2km(Fk) ≤
∑
k∈Z

2km(E2k) <∞

thus (2) holds. Finally, we show that (2) =⇒ (3). Suppose that (2) holds. Note that
E2k =

⋃
n≥k Fn (this union is disjoint). Then

∑
k∈Z

2km(Ek) =
∑
k∈Z

2k

(∑
n≥k

m(Fn)

)
=
∑
k∈Z

∑
n≥k

2km(Fn)

We can interchange these limits by our lemma, so

∑
k∈Z

2km(E2k) =
∑
n∈Z

∑
k≤n

2km(Fn) =
∑
n∈Z

m(Fn)
∑
k≤n

2k =
∑
n∈Z

m(Fn)
∞∑
j=0

2n−j

=
∑
n∈Z

m(Fn)2n
∞∑
j=0

2−j =
∑
n∈Z

2n+1m(Fn) = 2
∑
n∈Z

2nm(Fn) <∞

Thus (3) holds. We showed (1) ⇐⇒ (2) and (2) ⇐⇒ (3), so they are all equivalent.

Proposition 0.12 (Exercise 10). Define

f(x) =

{
|x|−a if |x| ≤ 1

0 otherwise
g(x) =

{
|x|−b if |x| > 1

0 otherwise

Then f is integrable on Rd if and only if a < d; also g is integrable on Rd if and only if
b > d.

Proof. First consider f . Then

Fk = {x : 2k < f(x) ≤ 2k+1} = {x ∈ B(0, 1) : 2k < |x|−a ≤ 2k+1}

For k < 0, Fk = ∅. For k ≥ 0, Fk is a spherical annulus between balls of radius 2−k/a and
2−(k+1)/a. So we can compute m(Fk) as

m(Fk) = m(B(0, 2−k/a))−m(B(0, 2−(k+1)/a))

= vd(2
−k/a)d − vd(2−(k+1)/a)d

= vd2
−kd/a(1− 2−d/a)
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where vd is the constant we found in Exercise 6 of Chapter 1. So then

∞∑
k∈Z

2km(Fk) =
∞∑
k=0

2kvd2
−kd/a(1− 2−d/a) = vd(1− 2d/a)

∞∑
k=0

(2k)(1−d/a)

If a < d, then 1− d/a < 0 so the sum converges. Conversely, if the sum converges, we must
have 1− d/a < 0, so a < d. Hence f is integrable if and only if a < d.

Now we consider g. For g,

E2k = {x : g(x) > 2k} = {x ∈ R \B(0, 1) : |x|−b > 2k}

For k ≥ 0, E2k = ∅. For k < 0, E2k is again a difference of balls centered at the origin, so

m(E2k) = m(B(0, 2−k/b)−m(B(0, 1))

= vd2
−kd/b − vd

= vd(2
−kd/b − 1)

So we compute ∑
k∈Z

2km(E2k) =
∑
k<0

2kvd(2
−kd/b − 1)

= vd
∑
k<0

2k(1−d/b) − 2k

= vd
∑
k<0

2k(1−d/b) − vd
∑
k<0

2k

The right sum converges to 1, and the left sum converges if and only if d < b. Thus g is
integrable if and only if b > d.

Proposition 0.13 (Exercise 11). Suppose that f is integrable on Rd, real-valued, and
∫
E
f(x)dx ≥

0 for every measurable E ⊂ Rd. Then f(x) ≥ 0 almost everywhere.

Proof. For E ⊂ Rd and ε > 0, define

Eε = {x ∈ E : f(x) ≤ −ε < 0}

Note that since f is measurable, Eε is measurable. Observe that

∞⋃
n=1

E1/n = {x : f(x) < 0}

By hypothesis, for every n we have

0 ≤
∫
E1/n

f(x)dx ≤ −
m(E1/n)

n
=⇒ m(E1/n) = 0
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Suppose the proposition is false. Then there exists a measurable E ⊂ Rd with m(E) > 0
and f(x) < 0 on E. Then

∞⋃
n=1

E1/n = E =⇒
∞∑
n=1

m(E1/n) = m(E)

but the infinite sum has all terms zero, so m(E) = 0, which is a contradiction.

Proposition 0.14 (Exercise 11). Let f be integrable on Rd, real-valued, and
∫
E
f = 0 for

every measurable set E ⊂ Rd. Then f(x) = 0 almost everywhere.

Proof. As shown above, f(x) ≥ 0 almost everywhere. Additionally,
∫
E
−f = 0 for every

measurable E, so by the previous result −f(x) ≥ 0 =⇒ f(x) ≤ 0 almost everywhere. Thus

f(x) ≤ 0 ≤ f(x)

almost everywhere, so f(x) = 0 almost everywhere.
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